Search results
1 – 10 of 56Ali Leylavi Shoushtari, Paolo Dario and Stefano Mazzoleni
Interaction plays a significant role in robotics and it is considered in all levels of hardware and software control design. Several models have been introduced and developed for…
Abstract
Purpose
Interaction plays a significant role in robotics and it is considered in all levels of hardware and software control design. Several models have been introduced and developed for controlling robotic interaction. This study aims to address and analyze the state-of-the-art on robotic interaction control by which it is revealed that both practical and theoretical issues have to be faced when designing a controller.
Design/methodology/approach
In this review, a critical analysis of the control algorithms developed for robotic interaction tasks is presented. A hierarchical classification of distributed control levels from general aspects to specific control algorithms is also illustrated. Hence, two main control paradigms are discussed together with control approaches and architectures. The challenges of each control approach are discussed and the relevant solutions are presented.
Findings
This review presents an evolvement trend of interaction control theories and technologies over time. In addition, it highlights the pros and cons of each control approaches with addressing how the flaws of one control approach were compensated by emerging another control methods.
Originality/value
This review provides the robotic controller designers to select the right architecture and accordingly design the appropriate control algorithm for any given interactive task and with respect to the technology implemented in robotic manipulator.
Details
Keywords
Xu Li, Yixiao Fan, Haoyang Yu, Haitao Zhou, Haibo Feng and Yili Fu
The purpose of this paper is to propose a novel jump control method based on Two Mass Spring Damp Inverted Pendulum (TMS-DIP) model, which makes the third generation of hydraulic…
Abstract
Purpose
The purpose of this paper is to propose a novel jump control method based on Two Mass Spring Damp Inverted Pendulum (TMS-DIP) model, which makes the third generation of hydraulic driven wheel-legged robot prototype (WLR-3P) achieve stable jumping.
Design/methodology/approach
First, according to the configuration of the WLR, a TMS-DIP model is proposed to simplify the dynamic model of the robot. Then the jumping process is divided into four stages: thrust, ascent, descent and compression, and each stage is modeled and solved independently based on TMS-DIP model. Through WLR-3P kinematics, the trajectory of the upper and lower centroids of the TMS-DIP model can be mapped to the joint space of the robot. The corresponding control strategies are proposed for jumping height, landing buffer, jumping attitude and robotic balance, so as to realize the stable jump control of the WLR.
Findings
The TMS-DIP model proposed in this paper can simplify the WLR dynamic model and provide a simple and effective tool for the jumping trajectory planning of the robot. The proposed approach is suitable for hydraulic WLR jumping control. The performance of the proposed wheel-legged jump method was verified by experiments on WLR-3P.
Originality/value
This work provides an effective model (TMS-DIP) for the jump control of WLR-3P. The results showed that the number of landing shock (twice) and the pitch angle fluctuation range (0.44 rad) of center of mass of the jump control method based on TMS-DIP model are smaller than those based on spring-loaded inverted pendulum model. Therefore, the TMS-DIP model makes the jumping process of WLR more stable and gentler.
Details
Keywords
The throughput of a manipulation process depends upon the arm's speed of operation, but many existing controllers provide accurate trajectory control only at low or moderate…
Abstract
The throughput of a manipulation process depends upon the arm's speed of operation, but many existing controllers provide accurate trajectory control only at low or moderate velocities. We propose a control method that explicitly compensates for configuration‐dependent gravity, acceleration, and velocity forces ‐ the latter being especially important during rapid simultaneous motions of a number of joints. A tabular form of the equations of motion is used in real‐time in conjunction with a configuration space memory organized by positional variables. The contents of the memory are pre‐computed only once for each manipulator and are usable for all possible movements. A planned implementation of this method for the Stanford Schienman arm that uses about 250K memory locations and requires about n3 + 3n2 arithmetic operations per evaluation is discussed, where n is the number of degrees of freedom of the device.
Xu Hao, Lang Wei, Yue Qiao, Shengzui Xu, Jian Bin Liao, Yu Xi, Wang Wei and Zhi-Wei Liu
The computing power of the legged robot is not enough to perform high-frequency updates for the full-body model predictive control (MPC) of the robot, which is a common problem…
Abstract
Purpose
The computing power of the legged robot is not enough to perform high-frequency updates for the full-body model predictive control (MPC) of the robot, which is a common problem encountered in the gait research of the legged robot. The purpose of this paper is to propose a high-frequency MPC control method for the bounding gait of a parallel quadruped robot.
Design/methodology/approach
According to the bounding gait characteristics of the robot, the quadruped robot model is simplified to an equivalent plane bipedal model. Under the biped robot model, the forces between the robot’s feet and the ground are calculated by MPC. Then, the authors apply a proportional differential controller to distribute these forces to the four feet of the quadruped robot. The robot video can be seen at www.bilibili.com/video/BV1je4y1S7Rn.
Findings
To verify the feasibility of the controller, a prototype was made, and the controller was deployed on the actual prototype and then fully analyzed through experiments. Experiments show that the update frequency of MPC could be stabilized at 500 Hz while the robot was running in the bounding gait stably and efficiently.
Originality/value
This paper proposes a high-frequency MPC controller under the simplified model, which has a higher working efficiency and more stable control performance.
Details
Keywords
Steve W. Heim, Mostafa Ajallooeian, Peter Eckert, Massimo Vespignani and Auke Jan Ijspeert
The purpose of this paper is to explore the possible roles of active tails for steady-state legged locomotion, focusing on a design principle which simplifies control by…
Abstract
Purpose
The purpose of this paper is to explore the possible roles of active tails for steady-state legged locomotion, focusing on a design principle which simplifies control by decoupling different control objectives.
Design/methodology/approach
A series of simple models are proposed which capture the dynamics of an idealized running system with an active tail. These models suggest that the overall control problem can be simplified and effectively decoupled via a proper tail design. This design principle is further explored in simulation using trajectory optimization. The results are then validated in hardware using a one degree-of-freedom active tail mounted on the quadruped robot Cheetah-Cub.
Findings
The results of this paper show that an active tail can greatly improve both forward velocity and reduce body-pitch per stride while adding minimal complexity. Further, the results validate the design principle of using long, light tails compared to shorter heavier ones.
Originality/value
This paper builds on previous results, with a new focus on steady-state locomotion and in particular deals directly with stance phase dynamics. A novel design principle for tails is proposed and validated.
Details
Keywords
Changhoon Kim and Jae H. Chung
The paper aims to develop a robotic deburring method based on a new active pneumatic tool.
Abstract
Purpose
The paper aims to develop a robotic deburring method based on a new active pneumatic tool.
Design/methodology/approach
The paper presents a new active pneumatic tool, which is developed by integrating two industrial pneumatic deburring tools based on a double cutting action – initial cut followed by fine cut. A simple control method is developed, which coordinates the motion of the tools and the arm.
Findings
The study finds that the developed method can improve robotic deburring in terms of speed and accuracy.
Research limitations/implications
The paper provides guidance for the design of a pneumatic deburring tool, its integration with an industrial robot, and robotic deburring control.
Practical implications
The new deburring tool prevents large contact force and bouncing from occurring during the contact transition. In addition, the developed deburring method demonstrates significant improvement in deburring speed and accuracy in comparison with other methods, which is translated into cost‐effective deburring.
Originality/value
The paper introduces an efficient robotic deburring method, which is developed based on a new active pneumatic tool, considers the interaction among the tool, the manipulator, and the workpiece, and couples the tool dynamics and a control design.
Details
Keywords
Abstract
Purpose
This paper aims to introduce a novel design of the biomimetic quadruped robot, including its body structure, three structural modes and respective workspace.
Design/methodology/approach
By taking a metamorphic 8-bar linkage as the body of a quadruped robot, the authors propose a reconfigurable walking robot that can imitate three kinds of animals: mammals (e.g. dog), arthropods (e.g. stick insect) and reptiles (e.g. lizard). Furthermore, to analyze the three structural modes of this quadruped robot, the workspace is calculated and studied.
Findings
Based on experimental data analyses, it is revealed that the metamorphic quadruped robot can walk in all its three structural modes and adapt to different terrains.
Research limitations/implications
Because the body of the quadruped robot is deformable and reconfigurable, the location of payload is not considered in the current stage.
Practical implications
The relative positions and postures of legs of the metamorphic robot can be rearranged during its body reconfiguration in such a way to combine all the features of locomotion of the three kinds of animals into one robot. So, the metamorphic quadruped robot is capable of maintaining wider stability margins than conventional rigid-body quadruped robots and conducting operations in different environments, particularly the extreme and restricted occasions due to the changeable and adaptable trunk.
Originality/value
The main contribution is the development of a reconfigurable biomimetic quadruped robot, which uses the metamorphic 8-bar linkage. This robot can easily reshape to three different structural modes and mimic the walking patterns of all mammals, arthropods and reptiles.
Details
Keywords
Priyaranjan Biswal and Prases Kumar Mohanty
Legged walking robots have numerous advantages over the wheel or tracked robots due to their strong operational ability and exposure to the complex environment. This paper aims to…
Abstract
Purpose
Legged walking robots have numerous advantages over the wheel or tracked robots due to their strong operational ability and exposure to the complex environment. This paper aims to present details about the mechanical formation and a new conceptual elliptical trajectory generation discussed throughout the paper of the quadruped robot.
Design/methodology/approach
Initially, a realistic CAD model of the four-legged robot is developed in Solidwork-2019. The proposed model’s forward and inverse kinematics equations are deduced using Denavit–Hartenberg parameters. Based on geometry and kinematics, manipulability and obstacle avoidance are investigated. A method of galloping trajectory is proposed for aiming the increase of upright direction impulse, which is produced by ground reaction force at each step frequency. Furthermore, the locomotion equation of the ellipse trajectory is derived by setting transition angle polynomial of free-fall phase, stance phase and swing phase and the constraints.
Findings
Finally, a successive simulation on a 2D sagittal plane is performed to check and verify the usefulness of the proposed trajectory. Before the development of the full quadruped, a single prototype leg is generated for experimental verification of the dynamic simulations.
Originality/value
The proposed trajectory is novel in that it uses force tracking control, which is intended to improve the quadruped robot’s robustness and stability.
Details
Keywords
Kaixin Li, Ye He, Kuan Li and Chengguo Liu
With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this…
Abstract
Purpose
With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this research is to propose an adaptive fractional-order admittance control scheme to realize a robot–environment contact with high accuracy, small overshoot and fast response.
Design/methodology/approach
Fractional calculus is introduced to reconstruct the classical admittance model in this control scheme, which can more accurately describe the complex physical relationship between position and force in the interaction process of the robot–environment. In this control scheme, the pre-PID controller and fuzzy controller are adopted to improve the system force tracking performance in highly dynamic unknown environments, and the fuzzy controller is used to improve the trajectory, transient and steady-state response by adjusting the pre-PID integration gain online. Furthermore, the stability and robustness of this control algorithm are theoretically and experimentally demonstrated.
Findings
The excellent force tracking performance of the proposed control algorithm is verified by constructing highly dynamic unstructured environments through simulations and experiments. In simulations and experiments, the proposed control algorithm shows satisfactory force tracking performance with the advantages of fast response speed, little overshoot and strong robustness.
Practical implications
The control scheme is practical and simple in the actual industrial and medical scenarios, which requires accurate force control by the robot.
Originality/value
A new fractional-order admittance controller is proposed and verified by experiments in this research, which achieves excellent force tracking performance in dynamic unknown environments.
Details
Keywords
Guoteng Zhang, Zhenyu Jiang, Yueyang Li, Hui Chai, Teng Chen and Yibin Li
Legged robots are inevitably to interact with the environment while they are moving. This paper aims to properly handle these interactions. It works to actively control the joint…
Abstract
Purpose
Legged robots are inevitably to interact with the environment while they are moving. This paper aims to properly handle these interactions. It works to actively control the joint torques of a hydraulic-actuated leg prototype and achieve compliant motion of the leg.
Design/methodology/approach
This work focuses on the modelling and controlling of a hydraulic-actuated robot leg prototype. First, the design and kinematics of the leg prototype is introduced. Then the linearlized model for the hydraulic actuator is built, and a model-based leg joint torque controller is presented. Furthermore, the virtual model controller is implemented on the prototype leg to achieve active compliance of the leg. Effectiveness of the controllers are validated through the experiments on the physical platform as well as the results from simulations.
Findings
The hydraulic joint torque controller presented in this paper shows good torque tracking performance. And the actively compliant leg successfully emulates the performance of virtual passive components under dynamic situations.
Originality/value
The main contribution of this paper is that it proposed a model-based active compliance controller for the hydraulic-actuated robot leg. It will be helpful for those robots that aim to achieve versatile and safe motions.
Details